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We consider the transport of overdamped particles in a two-dimensional periodic velocity field. This field
possesses extended lines of fixed points where the deterministic motion stops. Additive noise makes the lines
penetrable and results in an oscillatory motion along tori. We characterize the stochastic motion by the
probability distribution density, the stationary mean velocity, and the mean times of escape from bounded
domains. For intermediate noise intensities, the fluctuations enhance the transport of the particles compared to
the deterministic case. A fast dichotomic modulation of asymmetry enhances fluxes.
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Stochastic methods are powerful tools for describing the
transport properties of particles under the action of forces.
Examples of Brownian motion in different fields are well
known, including free motion, external constant forces, and
fields with local minima �1–3�. In particular, Brownian mo-
tion in periodic force fields gives examples of phase locking
scenarios, while similar methods in the case of nonstationary
fields are applied to many variants of ratchets. In many re-
spects the successful description of drift and transport in
force fields is caused by the existence of the underlying po-
tential. For one and two dimensions there are many works
giving a description of the transport mechanisms in Brown-
ian motors �4–8�.

The central dynamics we will investigate has the follow-
ing structure:

ẋ ¬ �x�x,y� = 2 sin x sin y + � cos�x − y� ,

ẏ ¬ �y�x,y� = − 2 cos x sin y + � sin�x − y� , �1�

where ẋ and ẏ describe the local velocity components, driven
by the two-dimensional velocity field �� = ��x ,�y�, so that no
potential can be defined. Equations �1� describe the motion
of an overdamped particle where the damping constant is set
to 1 by time scale transformation. The only parameter in the
system is �. It will be seen that ��0 breaks symmetry and
an overall motion is induced.

The work we will present here comes from questions aris-
ing during the control of spiral wave location in excitable
media. This control is important for many applications, in-
cluding prevention of cardiac arrythmias �9,10�. In the light-
sensitive Belousov-Zhabotinsky reaction �11�, the motion of
the core of emerging spiral waves can be controlled in dif-
ferent ways �12–14�. The most efficient tool to induce a spi-
ral wave drift is feedback control of the excitability of the
medium �15–17�. The feedback signal is proportional to the
medium activity integrated over a detector domain, or over
several of them. This signal determines the drift velocity
field �16–18�.

The dynamics of such complex structures can rarely be
described by motion in an underlying potential. This field
represents a sum of single drift vectors induced separately by
each detector domain. With control by two domains, the re-

sulting drift field contains lines of destructive interference
�18�. These lines are one-dimensional zones with vanishing
velocity ��x=�y =0� and consist of densely located fixed
points. The drift of the spiral core stops at these lines, which
therefore act as impermeable barriers in the absence of fluc-
tuations.

The drift velocity field induced far away from a single
point detector can be specified as a plane wave V1=exp�i�x
−y��. By construction, the second point generates an or-
thogonally directed field V2=exp�i�x+y+���. The velocity
field results from the superposition of both,

V�x,y� = �1 + ��exp�i�x − y�� − exp�i�x + y�� , �2�

where the parameter � determines the difference in the am-
plitudes. Taking real and imaginary parts, we obtain the two-
dimensional velocity field ẋ=Re V and ẏ=Im V.

In the case �=0, which we call the symmetric one, lines
with an infinite number of fixed points appear at y=k�,
where k is an integer. Along these lines the dynamics is mar-
ginally stable. They correspond to regions of vanishing ve-
locity in the x and y directions. The remaining nullclines,
where one component of the velocity vanishes, are located
along x=m� /2. At even m the velocity in the x direction
disappears, alternating at odd m with ẏ=0 �see Fig. 1�a��.
The x nullclines possess different stability, which alternates
periodically in the two spatial directions. The motion is re-
stricted in cells bounded by fixed point lines and nullclines.
Additionally, in the symmetric situation we obtain the para-
metric phase curves as y�x�=−ln �sin�x� � +C �y�k��, where
C is due to the initial condition.

In the asymmetric case, where ��0, no fixed points exist
at all; thus the limitation of the motion disappears and tra-
jectories move along tori. Accordingly, a periodic motion
occurs, and trajectories jump in intervals of � in both direc-
tions. A sample trajectory starting at �� /4 ,� /2� is shown in
Fig. 1�b� for �=0.1.

In the following, due to the periodicity of Eqs. �1�, we
will focus on the region x� �0,2��, y� �0,2��, which we
call �.

We compute the integral velocities vx and vy from inte-
gration of the velocity field ���x ,y� over the domain �. They

PHYSICAL REVIEW E 75, 062101 �2007�

1539-3755/2007/75�6�/062101�4� ©2007 The American Physical Society062101-1

http://dx.doi.org/10.1103/PhysRevE.75.062101


are controlled by the parameter � in the system �1�. The
velocity in the y direction is always positive if ��0. In
contrast, the sign of vx follows the sign of �.

Let us assume that the deterministic dynamics is affected
by a stochastic process. We include in Eqs. �1� additional
uncorrelated Gaussian white noise with zero mean in the
form ẋ=�x+�2Dx�1�t� and ẏ=�y +�2Dy�2�t�, where
��i�t�� j�t+���=�i,j���� and Dx,y are the noise intensities, re-
spectively. Thus, the particles will be able to cross the fixed
point lines by diffusion, and a stepwise propagation in time
appears also for �=0. The mean velocity in the positive y
direction becomes nonzero.

In order to study the interaction of drift and diffusion, we
investigate the two-dimensional transition probability density
p�x ,y , t �x0 ,y0 , t0� and consider the Fokker-Planck equation
�FPE� corresponding to the system �1� with additive noise.

First we treat the stationary distribution p0�x ,y� that
develops in the long-time limit, taking periodic boundary

conditions for the region �. We use the matrix-continued-
fraction method �19�. The probability density for Dx=Dy

=D=0.6 is shown in Fig. 2�a�. It is symmetrically distributed
in space for �=0. The parameter � corresponds to the veloc-
ity field shown in Fig. 1�a�. Although there is no attractor in
the system, pronounced accumulation points arise.

However, for ��0, the symmetry is broken, and one di-
rection is preferred as illustrated in Fig. 1�b�. In that case
also a probability accumulation appears as long as the noise
intensities or � are not too large. The maxima are separated
by regions of low probability. There are paths of nonvanish-
ing probability, which connect the maxima diagonally. The
location of these probability density maxima changes with
the noise level. For D→0 they emerge near the fixed point
lines. With increasing noise intensity the maxima move
down to the deepest sinks of the velocity field, which
are located at �k� ,3�k+2l�� /4�, with integer k and l �see
Fig. 3�.
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FIG. 1. Velocity field given by Eq. �1� with nullclines �ẋ=0, —; ẏ=0, - - -�. The arrows illustrate the direction of the field. �a� Symmetric
case ��=0� with two phase curves; �b� asymmetric ��=0.1� with a sample trajectory �thick line�.
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FIG. 2. �Color online� Stationary probability density p0�x ,y� for Dx=Dy =0.6. �a� Symmetric, �=0; �b� asymmetric, �=0.5. The arrows
show the vector field of the stationary probability current �jx

0 , jy
0�.
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The arrows in Fig. 2 indicate the stationary probability
current given by �tp

0=−div j�0=0. Let us consider the inte-
grated currents over the domain � as

Ji
0 = 	

0

2� 	
0

2�

ji
0�x,y�dx dy = ��i�, i = x,y . �3�

These currents are equal to the mean velocities �8�. Due to
the symmetry of the probability distribution, the current in
the x direction disappears regardless of the noise level. If �
�0, Jx

0 decreases monotonically with increasing noise inten-
sity. The solid and dashed curves in Fig. 4 show the noise
dependence of the mean y velocities for �=0 and 0.2, re-
spectively. The current in the y direction reaches the deter-
ministic velocity for small fluctuations, which is finite for
��0 and zero for �=0.

At high noise intensities, the y currents as well as Jx
0 de-

crease to zero independently of �. In this regime, the prob-
ability is asymptotically equally distributed and no directed
currents exist. We obtain a maximum for intermediate noise
at Dmax
0.64, where the current maximizes the transport

through the system. The opposite effect, that the noisy mo-
tion is slower than the deterministic one, sets in at noise
values about an order of magnitude higher than the local
potentials of O�1� coming from the sinusoidal forces in Eqs.
�1�.

We stress that the dynamics is not symmetric with respect
to a change of the sign of �. The maximum of the Jy

0 current
appears inside the interval −0.32	�	0.45. Outside, the
current decrease monotonically.

Dichotomous switching of the sign of � in Eqs. �1� yields
surprising effects. Let both signs of � occur with equal prob-
ability, so that the mean value of this parameter is zero. First
we consider a switching rate that is adiabatically slow. This
means that between two switching events the system can
reach the steady state. In this case an almost constant net
current in the x direction remains after averaging over both �
values. It is shown in Fig. 4 as the dotted curve. This effect is
rather small but gets more pronounced for larger �. The cor-
responding adiabatically switched y current starts at a finite
velocity for D→0 �see dash-dotted line in Fig. 4�. For in-
creasing noise level this current approaches asymptotically
the curve for �=0, due to the decreasing influence of the
asymmetry. On the other hand, at switching rates much faster
than the time scale of the dynamics, the currents in both
directions are the same as in the fixed symmetric case.

Now we intend to characterize the temporal behavior of
the transition probability distribution. A finite difference
scheme to solve the FPE numerically is used up to noise
intensities of Dx,y 
O�10−3�. To determine the time for the
Brownian particle to escape out of �, we use absorbing
boundaries at x=y=0 and x=y=2�.

There are two different time scales in the dynamics of the
transition density. One is near the accumulation points,
where diffusion plays the dominant role; the other is between
them, where the drift governs the dynamics. Near the men-
tioned maxima of probability the gradient is strong, and
therefore the current is large. But the deterministic field is
directed opposite to the y current, there. The preferred way
for a particle to leave the accumulation points is diffusion
along the fixed point line, until the deterministic velocity
field drifts the particle to the boundaries in a relatively short
time.

In order to describe such an evolution we use the waiting
time distribution w�t� given by �19�

w�t�x0,y0� ª −
�

�t
	

�

p�x,y,t�x0,y0�d� , �4�

and its first moment TEsc�x0 ,y0�=�0
�tw�t �x0 ,y0�dt, which is

the mean time the particle needs to pass the barriers from the
chosen initial conditions for a certain noise value and asym-
metry.

A comparison of the noisy escape time with the determin-
istic one with respect to the parameter � is shown in Fig. 5.
We choose again Dx=Dy =D and start at x0=y0=� with a
�-like distribution.

For the symmetric case ��=0�, the purely deterministic
escape time TEsc�D=0� diverges. Increasing noise reduces
the escape time monotonically. The drift terms, and accord-
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FIG. 3. �a� Location of a probability density maximum in the
domain � with respect to the noise intensity. The arrows show the
direction of increasing noise. �b� Pythagorean distance of the maxi-
mum to the sink at x=� and y=3� /4 versus noise. ��=0, solid
line; �=0.5, dashed line.�
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FIG. 4. Integrated stationary probability currents vs. noise inten-
sity. Jy

0 for �=0: solid line, Jy
0 for �=0.2: dashed line, �Jy

0�� for
dichotomously switched �= ±0.2: dashed dotted line, �Jx

0�� for di-
chotomously switched �= ±0.5: dotted line.
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ingly the parameter �, play a less important role, and the
curve becomes flat. The more ��� increases for fixed D,
the more the drift governs the motion, the escape takes
place with the help of the deterministic velocity, and TEsc
decreases accordingly. However, when � passes a certain
value, fluctuations of intermediate strength induce a stabili-
zation for the particle to stay inside �. Thus the escape times
depend on the noise intensity in a nonmonotonic way. For
example, for fixed �
−0.3, the deterministic escape time
is smaller than the one for D=0.1, but longer than for
D=0.64 �see Fig. 5�.

We also find parameter regimes for large ��� where the
curve with the higher noise value crosses the one with

smaller noise. There the escape times depend on the noise
intensities inversely as compared to the mentioned case
�=0.

For comparison we solve the two-dimensional diffusion
equation without drift terms. We obtain the pure noise escape
time as Tesc

D =const/D, where const
2.91, taking the same
absorbing boundaries and initial conditions as mentioned be-
fore and using Eq. �4�. This escape time decreases monotoni-
cally with increasing noise as well, but faster than in the
symmetric case of the full problem with drift and small noise
intensities. In this regime, the pure noise escape time is
greater than in the case of the dynamics including drift. From
noise intensities of D�O�1� and above, the behavior of both
escape times will be exchanged.

In this work we considered Brownian particles driven by
a simple periodic field with particular features. We investi-
gated the Fokker-Planck equation to get the stationary and
time-dependent properties of the system, and obtained dis-
tinct maxima of accumulated probability density, although
there is no attractor in the system. The effect of noise pro-
duces a sensitive response of the stationary currents. We
found regimes where intermediate noise strength plays a
constructive role, entailing enhanced transport through the
medium. The transition probability distribution gave us es-
cape times out of the accumulation points, which can be
shorter or longer compared to the deterministic motion. Con-
sidering a small parameter range, we obtained a complex
interplay of drift and diffusion at noise intensities of the or-
der of magnitude of the deterministic force amplitudes.

The authors thank Michael Zaks for constructive discus-
sions and Dirk Hennig for a critical reading of the manu-
script.
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FIG. 5. Escape time with respect to the asymmetry parameter �.
The different noise intensities are directed as Dx=Dy =D. The initial
condition is chosen as �x0=� ,y0=��.
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